顯示利用蛋白質之等電點差異進行分離。 先添加適當兩性電解質以製備 pH 值穩定均勻之膠體,精氨酸待測蛋白質混合樣品則置入膠體中之樣品槽,通以電流後各種蛋白質則進入膠體並開始緩慢移動;當移動到與其 pI 值相同之 pH 值才停止。 圖 3-21 等電焦集法。 表 3-6 一些蛋白質之等電點 將等電焦集法與 SDS 電泳組合而成之實驗流程稱為二維電泳(two-dimensional electrophoresis)。 此方法用於分析複雜蛋白質混合物時可大幅提高其解析度(圖3-22)。
二維電泳之靈敏度也比其他任何一種單獨進行之電泳方法高。 二維電泳可分離分子量相同但等電點不同之蛋白質;或是等電點近似但分子量不同者。 圖3-22(a) 精氨酸顯示蛋白質樣品先以柱狀之等電焦集法進行第一次分離,爾後將此柱狀膠體水平置於平板狀膠體上進行 SDS 聚丙烯醯胺膠體電泳分析。完成後所得到之膠體,水平方向是依蛋白質之不同等電點進行分離,垂直方向則依蛋白質分子量大小差異進行分離。 圖3-22(b) 顯示以二維電泳技術可以解析出超過1,000 種大腸桿菌中之蛋白質。 圖 3-22(a) 二維電泳。圖 3-22(b) 二維電泳。
胜肽可由其離子化行為加以區分胜肽僅具一個游離胺基與一個游離羧基,分別位於胜肽鏈狀結構兩端(圖3-15)。這些基團在胜肽中也如同它們在游離態時一樣可以離子化,但其解離常數不同於胺基酸,因為此時帶相反電荷之基團並非聯結在同一個α碳原子上。其他不在末端上的胺基酸之α-胺基與α-羧基均以肽鍵共價聯結在一起,因此無法離子化,也不會對胜肽之整體酸鹼行為作出任何貢獻。 顯示此四肽具有一個游離α-胺基、一個游離 α-羧基與兩個離子化 R 基團。在 pH 7.0 時可離子化基團以紅色表示。 四肽具生物活性的胜肽與多胜肽之大小差異甚鉅許多小分子胜肽在極低濃度就能發揮功效,如一些脊椎動物之激素(荷爾蒙)就是小分子胜肽。 較大一些的胜肽稱為小多肽或寡肽,如胰臟激素-胰島素由兩條多肽組成,一條含30個精氨酸殘基,另一條則為21個。 有些蛋白質由單一多肽鏈組成,但另一些稱為多次單元(multisubunit)蛋白質者,則由兩條或以上的多肽以非共價性鍵結聯結在一起(表3-2)。多次單元蛋白質中的每條個別多肽可能完全相同或不同,如果至少有兩個相同次單元組成之蛋白質稱為寡聚化 (oligomeric)蛋白質;而相同的次單元則被稱為一個原聚體(protomers)。 表 3-2 一些蛋白質之分子資料 有些蛋白質是由兩條或以上之多肽鏈以共價性方式鍵結在一起,例如胰島素的兩條多肽鏈是以雙硫鍵聯結在一起。
蛋白質的功用麩醯胺酸壁細胞,免疫細胞的能量來源,在重症患者中的需求增加,因此在重症患者的營養品中常會添加,戒者額外自費購買麩醯胺酸粉 重症病患要丌要補充,胺基酸在醫界還是有爭議 蛋白質的功用蛋白質的功用 紅肉,白肉怎麼分 紅肉攝取量和大腸癌、心血管疾病、腦血管疾病、高血壓等發生風險為正向相關 有趣的是台灣最近的研究發現紅肉攝取量和總死亡率,心血管疾病死亡率,癌症死亡率
當要求較高之相同性時,最具保守性之胺基酸殘基往往會被過分呈現,而使得這些基質在用來辨識相關性較低之同源蛋白質時較不適用。 測試結果顯示 Blosum62 胺基酸可提供範圍最大的蛋白質家族之可靠比對,因此它也成為許多序列比對軟體之系統原始設定表格。 圖3-31 顯示此區塊取代基質表是經由比較數以千計之序列比對小區塊所產生,這些小區塊之序列至少有 62% 完全相同。其餘不相同的殘基則被賦予一分數,說明它們被其他胺基酸殘基取代之頻率。 每次取代都對一次特定之比對分數有貢獻,正值(黃色標示者)會增加分數,胺基酸負值則會減去分數。比對序列中相同的殘基(自左上至右下角對角線黃色標示者)也因它們被取代的頻率產生一個分數。 具有特殊化學性質之 Cys 與 Trp 分別得到9與11分的高分,而較易在保守性取代中被替換之 Asp 與 Glu 則各有6與5分。 許多電腦程式利用 Blosum62 為新的序列比對打分數。
- May 08 Thu 2025 00:55
蛋白質樣品先以柱狀之等電焦集法進行第一次分離,爾後將此柱狀膠體水平置於平板狀膠體上進行 SDS 聚丙烯醯胺膠體電泳分析。完成後所得到之膠體,水平方向是依蛋白質之不同等電點進行分離,垂直方向則依蛋白質分子量大小差異進行分離。 圖3-22(b) 顯示以二維電泳技術可以解析出超過1,000 種大腸桿菌中之蛋白質。 圖 3-22(a) 二維電泳。圖 3-22(b) 二維電泳
close
文章標籤
全站熱搜
留言列表
發表留言