增加管柱長度將提高分離效果(即解析度增加);但相對地隨著層析時間的增加,蛋白質色帶隨擴散作用也會持續加寬,此現象則會降低解析度。 以圖中為例,蛋白質 A 可完全與 B 和 C 分離,但 B 與 C 之間則因擴散現象而無法達到完全分離的效果。 圖 3-17 管柱層析法。 個別蛋白質由於其性質之差異會以不同之速度通過層析管柱。精氨酸例如在陽離子交換層析法(cation exchange chromatography)中(圖3-18a),固相基質帶有負電荷基團。 此時樣品溶液中帶有淨正電荷之蛋白質通過基質之速度會遠較帶有淨負電荷之蛋白質慢,因為前者與基質間產生之交互作用延滯其通過速度。 兩種性質的蛋白質會分成兩個明顯的色帶,而蛋白質色帶在移動相中延展的情形會受到兩種因素影響:一是管柱造成性質差異的蛋白質分離的自然現象;二是擴散作用造成的色帶分散現象。 圖3-18(a) 顯示離子交換層析法利用蛋白質在特定 pH 值時之靜電荷差異進行分離。
每小區採收 10 株之加總平均重量,以 A 處理:三合一微生物肥料 (3-in-1 microbial fertilizer) 稀釋 500 倍及 B 處理:三合一微生物肥料稀釋 1,000 倍均表現優於 C 處理:三合一微生物肥料稀釋 2,000 倍及 D 處理:化學肥料稀釋 1,000 倍之對照組 (CK1),經統計分析達顯著差異 ( 表二 ),而施用水之對照組 (CK2),因為未追加補充營養元素與肥份平均鮮果重量最差;由結果初步證實添加芽孢桿菌 MLBV19-3 及胺基酸有助於提升肥料的功效,可增加蔬果類作物的產量。三合一微生物肥料於田間應用建議施用倍數為稀釋 1,000 倍可發揮很好的效果,也較符合農民使用的成本考量,並相較於純化學肥料處理組,青椒與胡瓜鮮果產量可分別提升 36.5% 與 17%。 表二、比較不同濃度的三合一微生物肥料對青椒與胡瓜鮮果重量之差異 (CF:化學肥料 )Table 2. Comparison of 3-in-1 microbial fertilizers with different concentrations on fruit weight of green pepper and courgette (CF: Chemical fertilizer) 三、胺基酸三合一微生物肥料於草莓與番茄測試結果草莓測試結果顯示,每小區 50 粒之加總平均鮮果重量,以 A 處理:三合一微生物肥料稀釋 1,000 倍及 B 處理:芽孢桿菌 + 化學肥料稀釋 1,000 倍處理組表現最優異,分別為 1,122.5 g、1,089.2 g,推測三合一微生物肥料及芽孢桿菌 + 化學肥料對草莓鮮果產量有明顯提升的效果,比較C 處理:胺基酸 + 化學肥料稀釋 1,000 倍的平均鮮果重量 853.5 g 及 D 處理:純化學肥料稀釋 1,000 倍對照組 (CK1) 的 815.3 g,經統計分析均達顯著差異 ( 表三 ),而施用水處理對照組 (CK2) 的平均鮮果重量為 635.2 g,因未追加補充營養元素與肥份而平均鮮果重量最差;進一步測試每小區 20 粒草莓平均糖酸比之結果,A 處理:三合一微生物肥料稀釋 1,000 倍及 C 處理:胺基酸 + 化學肥料稀釋 1,000 倍,草莓平均糖酸比(° Brix/g acid) 分別為 9.9 及 9.5,表現同等優異,其中胺基酸的添加對草莓糖酸比提升,增加鮮果品質具有正面的幫助,比較 B 處理:芽孢桿菌 + 化學肥料稀釋 1,000 倍處理組及 D 處理:純化學肥料 1,000 倍對照組 (CK1) 的平均糖酸比分別為 8.1 及 7.4,經統計分析達顯著差異 ( 表三 ),而施用水處理對照組 (CK2) 的平均糖酸比為 6.3,同樣因未追加補充營養元素 與肥份而草莓品質 ( 糖酸比 ) 最差。綜合結果比較分析,三合一微生物肥料中的芽孢桿菌與胺基酸具有加乘作用,可同時提升草莓鮮重與糖酸比品質。 番茄試驗結果顯示,每小區採收 10 株之加總平均鮮果重量,同樣以 A 處理:三合一微生物肥料 1,000 倍及 B 處理:芽孢桿菌 + 化學肥料 1,000 倍處理組表現最優異,分別為 1,867.5 g、1,750.6 g,可得知三合一微生物肥料及芽孢桿菌 + 化學肥料也對番茄鮮果產量有明顯提升的效果;比較C 處理:胺基酸 + 化學肥料 1,000 倍的平均鮮果重量 1,305.3 g 及 D 處理:純化學肥料 1,000 倍對照組 (CK1) 的平均鮮果重量 1,301.2 g,經統計分析均達顯著差異 ( 表四 );而施用水處理對照組 (CK2) 的平均鮮果重量為 935.2 g,平均鮮果重量最差。進一步測試每小區 10 粒番茄鮮果平均糖度 (° Brix),結果顯示 A 處理:三合一微生物肥料 1,000 倍及 C 處理:胺基酸 +化學肥料 1,000 倍的平均糖度分別為 8.6 及 8.5,表現同等優異,其中胺基酸的添加對增加番茄糖度品質也具有正面幫助;比較B 處理:芽孢桿菌 + 化學肥料 1,000 倍處理組與 D 處理:純化學肥料 1,000 倍對照組 (CK1) 平均糖度分別為 7.2 與 7.0,經 環狀胜肚胺基酸組成之偏妤性生物責訊在生物化學課程 中之應用
蛋白質與親和基的接合多經由非共價作用力,因此接合為一可逆的過程每個蛋白質與同一種親和基的接合可發生在分子內的一個或多個部位 - 如發生在多個部位時,與同一種親和基接合的能力可能相同或不同,因此產生了接合的協同性,此種關係稱為同質性效應,如血紅素與O2的接合 一個蛋白質分子內也可有不同種類的親和基接合部位- 不同親和基的接合部位在親和基接合時,會有相互溝通(cross-talk)的特性,此種關係稱為異質性 效應,如血紅素與O2的接合受2,3-BPG及波爾效應的影響
雙硫鍵之形成不僅限於分子內 Y 兩個蛋白質分子間之胺基酸也可形成雙硫鍵而造成交 環狀胜肱胺基酸組成之偏好性生物責訊在生物化學課程中之應用 3 聯(crOss link)。本文針對具有分子內雙硫鍵之胜肱,分析雙硫鍵所形成之環狀序列申胺基酸組成之偏好性 。 三‵方法學員需具備使用網際網路(Intemet)的能力 。 本文使用全球資訊網(WOrId Wide Web)之責源進行蛋白質序列之分析 。 所需之配備為 IBM 相容之個人電腦(486 以上)以及 Netscape Navigator (4﹒0 以上版本) 瀏覽軟體0 實驗之基本步驟可按圖二所建議之流程進 行操作。步硼一 首先需明確設定使用網路資源進行搜尋之具體目的 。 此一目的可由學生提出或由教師整理一清單而由學生挑選 。 胺基酸目的之設定應以考量搜尋過程與分析結果所需之時問,並能闡明相關生物性質為原則。本文將以"比較天然環狀胜肚中各胺基酸出現之機率"為範例進行搜尋 。 環狀胜肱限定為由二半胱胺酸(Cys)形成分子內雙硫鍵之胜肚。而包含此環狀序列之胜肚總長度可先限定在 20個胺基酸以內 】以利初步搜尋之進行。 步′鍺二 選擇資科厙 。 目前網路上與蛋白質序列相關之資料厙中較為完整者為 SWISS﹣PROT 以及 PIRe 此二責料厙之綢址列於表一 。此二網蛣中均具有多重搜尋之功能墜本文中胜肚序列均取自 SWISS﹣PROT(releas639ˍ7)﹙…﹚責料厙。SWISS PROT的特色 在於其周詳之註解系統之責料進行過篩選處理 。 尤為重要的是該資料厙對重複 進入資料厙後即可針對搜尋目的輸入條件 。
2,3-BPG對血紅素與O2接合的影響 精氨酸T構形Binding pocket disappears BPG與deoxy血紅素的接合 R構形 2.與血紅素相關的疾病鐮形細胞貧血症(sickle-cell anemia)*- 此病症為一“molecular disease”,由Pauling於 1949年提出的 - Sickle-cell hemoglobin (HbS)分子,其β次單元的 Glu6(側鏈帶負電)因突變置換為Val6 (側鏈為疏水) 地中海型貧血症(thalassemias)- α-Thalassemias (甲型, β4或γ4),其α次單元有缺失 - β-Thalassemias (乙型),其β次單元有缺失
- 2月 09 週一 202601:31
因此接合為一可逆的過程每個蛋白質與同一種親和基的接合可發生在分子內的一個或多個部位 - 如發生在多個部位時,與同一種親和基接合的能力可能相同或不同,因此產生了接合的協同性,此種關係稱為同質性效應,如血紅素與O2的接合
文章標籤
全站熱搜

留言功能已依作者設定調整顯示方式