Chapter 3胺基酸、胜肽與蛋白質Amino Acids, Peptides, and Proteins 蛋白質是胺基酸的聚合物,由每一個彼此相鄰的胺基酸殘基(amino acid residue)以一種特殊的共價性鍵結作聯結(「殘基」一詞反應出胺基酸彼此相結合時脫去一個水分子的事實)。 胺基酸具有共同之結構特徵 常見的20種胺基酸都是α-胺基酸,它們的羧基與胺 基都是鍵結到同一個碳原子(即α碳)(見圖3-2)。這些胺基酸彼此之間的差異就在其支鏈R基團( R groups)上,其結構、大小與帶電性的差異也影響 到各種胺基酸在水中的溶解度。 除了甘胺酸之外,所有常見胺基酸的α碳原子上均鍵結了四種不同的基團:羧基、胺基、R基團與一個氫原子( 圖3-2 ) ; 因此α 碳原子是一個對掌中心 (chiral center)。 圖 3-2 胺基酸的一般結構。20種常見胺基酸已被賦予由三個英文字母組成的縮寫及以一個英文字母代表的符號,通常在表示蛋白質的胺基酸序列及組成時使用。 組成蛋白質的各種常見胺基酸 圖 3-3 α-胺基酸的立體異構化現象。
表面疏水的區塊3. 角蛋白,膠原蛋白與絲纖維蛋白此三種蛋白質均為扮演結構功能的纖維狀蛋白,通常由規則性的二級結構進一步組合形成特殊的構造 - 組成的構造具有強韌與穩定的特性,符合擔任保護與支撐的功能角蛋白- 角蛋白由兩股α-螺旋相互纏繞形成coiled coils*,其一級結構具有(a-b-c-d-e-f-g)n的序列,其中a與d為非極性胺基酸 - 頭髮的構造*含有共價的cross-links (雙硫鍵)- 燙髮(permanent wave)的原理與所含的胺基酸 (具有-SH官能基)有關 膠原蛋白- 膠原蛋白的基本構造為特殊的三股螺旋狀構造*
胜肽可由其離子化行為加以區分胜肽僅具一個游離胺基與一個游離羧基,分別位於胜肽鏈狀結構兩端(圖3-15)。這些基團在胜肽中也如同它們在游離態時一樣可以離子化,但其解離常數不同於胺基酸,因為此時帶相反電荷之基團並非聯結在同一個α碳原子上。其他不在末端上的胺基酸之α-胺基與α-羧基均以肽鍵共價聯結在一起,因此無法離子化,也不會對胜肽之整體酸鹼行為作出任何貢獻。 顯示此四肽具有一個游離α-胺基、一個游離 α-羧基與兩個離子化 R 基團。在 pH 7.0 時可離子化基團以紅色表示。 四肽具生物活性的胜肽與多胜肽之大小差異甚鉅許多小分子胜肽在極低濃度就能發揮功效,如一些脊椎動物之激素(荷爾蒙)就是小分子胜肽。 較大一些的胜肽稱為小多肽或寡肽,如胰臟激素-胰島素由兩條多肽組成,一條含30個胺基酸殘基,另一條則為21個。 有些蛋白質由單一多肽鏈組成,但另一些稱為多次單元(multisubunit)蛋白質者,則由兩條或以上的多肽以非共價性鍵結聯結在一起(表3-2)。多次單元蛋白質中的每條個別多肽可能完全相同或不同,如果至少有兩個相同次單元組成之蛋白質稱為寡聚化 (oligomeric)蛋白質;而相同的次單元則被稱為一個原聚體(protomers)。 表 3-2 一些蛋白質之分子資料 有些蛋白質是由兩條或以上之多肽鏈以共價性方式鍵結在一起,例如胰島素的兩條多肽鏈是以雙硫鍵聯結在一起。
圖3-16 顯示一級結構為一連串胺基酸以肽鍵相聯結 所形成之序列,通常也包含雙硫鍵之形成。一級結構所產生之多肽鏈可進一步形成二級結構組成元件,如 α-螺旋。α-螺旋是一個摺疊完成的多肽三級結構中的一部份,而三級結構可能只是一個多次單元蛋白質完整四級結構中的一個次單元。在此以血紅蛋白為例。 圖 3-16 蛋白質結構的層級。 胺基酸可經由胜肽鍵共價聯結成胜肽與蛋白質。細胞中含有數以千計不同種類的蛋白質,每一種蛋白質都具有不同的生物功能。 蛋白質可以是由長達一百至數千個胺基酸殘基所組成的長多胜肽,然而也有少數天然存在的胜肽是僅由幾個胺基酸殘基所構成的。有些蛋白質是由數個非共價性聯結的多肽鏈(稱為次單元)所組成。簡單的蛋白質水解後僅會得到胺基酸,共軛蛋白質則含有額外的組成份如金屬或有機輔基。 一個蛋白質的胺基酸序列是它所特有的,稱為此蛋白質之一級結構。
氧的接合蛋白肌紅蛋白(Mb)與血紅素(Hb) - O2的接合部位為鐵紫素或血基質(heme, Fe+2)- 血基質與O2接合的能力受蛋白質結構的影響,游離的血基質,其CO的接合與O2的接合為25,000 : 1,而肌紅蛋白與血紅素*,其CO的接合與O2的接合為 200 : 1 肌紅蛋白與血紅素的功能受其結構的影響- 在生物功能上,胺基酸肌紅蛋白負責O2的儲存,血紅素負責O2的輸送* - 在結構上,肌紅蛋白具有三級構造,血紅素具有四級構造(α2β2)*
目前分類:胺基酸 (10)
- Feb 12 Wed 2025 01:03
表面疏水的區塊3. 角蛋白,膠原蛋白與絲纖維蛋白此三種蛋白質均為扮演結構功能的纖維狀蛋白,通常由規則性的二級結構進一步組合形成特殊的構造 - 組成的構造具有強韌與穩定的特性,符合擔任保護與支撐的功能角蛋白- 角蛋白由兩股α-螺旋相互纏繞形成coiled coils*,其一級結構具有
- Feb 12 Wed 2025 01:03
氧化氮合成酉每乃是誘導型。它既不被表現,也非鈣質及調鈣蛋白依賴型 57-61。後者存於其他組織,包括血管平滑肌、腫瘤細胞、肝細胞、巨噬細胞、庫氏細胞、㆗性白血球、心肌細胞及纖維母細胞 57-61。此種合成酉每 ( NOS ) 僅對於細胞素有反應而產生 ( 諸如干擾素 γ 以及內毒素 ) 而且會使 ㆒氧化氮產生量急遽增加 20 倍之多
蛋白質溶解度大小是 由 pH值、溫度、鹽濃度與其他因子共同影響的一種複雜性質。 含有待分離蛋白質的溶液,在繼續進行後續純化步驟 前,胺基酸通常需先經過處理。例如透析(dialysis)就 是一種利用蛋白質大分子性質而將之交換溶劑的方法。 部分純化的蛋白質溶液先被置入利用半透膜製成的袋子或管子內,再懸浮於適宜離子強度之大體積緩衝溶液中。此時半透膜將允許內外鹽類與緩衝液之交換,而蛋白質則保持在袋子內。 功能最強大的分劃方法是管柱層析法(column chromatography)。
此種酉每系統至少有兩種不同之家族。此結構型式是鈣及調鈣蛋白依賴型。此原始型態存於神經元、內皮細胞、血小板、巨噬細胞、間質細胞以及心內膜及心肌細胞。它主要存於細胞膜緊接著微粒形成 55-57。但仍有少部分胞質液之㆒氧化氮合成酉每-後者較少鈣質及調鈣蛋白依賴 58。這些酉每系統會產生持續性低流量㆒氧 化氮釋放。另外㆒胺基酸氧化氮合成酉每乃是誘導型。它既不被表現,也非鈣質及調鈣蛋白依賴型 57-61。後者存於其他組織,包括血管平滑肌、腫瘤細胞、肝細胞、巨噬細胞、庫氏細胞、㆗性白血球、心肌細胞及纖維母細胞 57-61。此種合成酉每 ( NOS ) 僅對於細胞素有反應而產生 ( 諸如干擾素 γ 以及內毒素 ) 而且會使 ㆒氧化氮產生量急遽增加 20 倍之多 62。
以目前所使用的化學反應組合來說,最重要的限制在於每個化學循環的反應效率。我們可由計算不同長度的胜肽, 在每步驟產率為 96.0% 或 99.8%下所得之總產率(表3-8)來說明。任一步驟之反應不完全,將造成下一步驟不純物的產生(即較短之胜肽片段)。 表 3-8 胜肽合成各步驟產率對總產率之影響 許多新的胜肽聯結方法,可供將胜肽組合成大分子蛋白質。藉由這些方法,各種新型式的蛋白質(甚至包含一般在細胞蛋白質中不存在者)都可藉由化學官能基團的精確定位製造出來。這些新型式的蛋白質,有助於我們以新的方法測試酵素催化特性、創造具有新化學性質之蛋白質、以及可摺疊成特定結構之胜肽序列。 胺基酸序列可提供重要的生化資訊 蛋白質家族具有共同的序列與功能特徵,可以藉由胺基酸序列之間的相似性程度加以判斷歸類。
肌紅蛋白的結構與血紅素的α次單元或β次單元的結構均十分類似,且同樣具有攜氧的功能,極可能源自於一個共同的祖先 (一個原始的球蛋白)* 3. 以細胞色素c的研究為例比較不同來源的細胞色素c的胺基酸胺基酸序列,說明蛋白質的結構研究對建立演化關係的重要性 - 細胞色素c是粒線體電子傳遞鏈的成分,對細胞的存活極為重要 - 分析得自麵包酵母及人類等40多種不同來源的細胞色素c,雖然其蛋白質的一級構造不盡相同但卻有令人訝異的相似處 - 細胞色素c平均含有104個胺基酸,其中有28個完全相同*,
異位效應是蛋白質不同部位之間的相互影響異位效應(allostery)是具有四級結構的蛋白質所特有 - 此類蛋白質含有不同的次單元,如催化或活性次單元是受質或反應物接合的部位,而調節次單元則是調節物的接合部位 - 當兩種不同的親和基接合部位,胺基酸因親和基接合後引發的構形改變進而彼此溝通,如血紅素攜氧特性與影響其攜氧能力的因子研究即為此效應的最佳例子 1. 影響蛋白質活性的因子除了溫度、pH值、受質、輔因子或調節劑濃度等外,尚有三個較為重要的機制2. 蛋白質的切除活化作用* 如消化酵素、凝血因子與一些激素等蛋白質通常合成時是不具有活性的先質(precursors)
- Feb 12 Wed 2025 01:02
大分子蛋白質須先經片段化後始能完成定序 蛋白質中非常長的多肽必須先打斷成小片段後才能有效地進行定序。在此,蛋白質會先以化學或酵素方法切割成數個特定的片段。如果有雙硫鍵存在,必須先將其打開。每個片段都需分別純化後再以艾德曼降解法進行定序。最後,各片段出現在原始蛋白質中之順序將排列好
若欲定序整條多肽,則必須使用 Pehr Edman 所開發出來的方法。艾德曼降解法(Edman degradation)只會對胜肽之胺基酸殘基加以標定 並移除之,其餘所有肽鍵仍均保持完整(圖3-25b)。 目前艾德曼降解法可在一種稱為蛋白質定序儀 (sequenator)上進行,機器會將各步驟所需試劑 以正確比例確實混勻、分離且決定產物,並記錄結果。這些方法是非常靈敏的,通常起始樣品蛋白質僅需數微克即可進行完整定序。 大分子蛋白質須先經片段化後始能完成定序 蛋白質中非常長的多肽必須先打斷成小片段後才能有效地進行定序。在此,蛋白質會先以化學或酵素方法切割成數個特定的片段。如果有雙硫鍵存在,必須先將其打開。每個片段都需分別純化後再以艾德曼降解法進行定序。最後,各片段出現在原始蛋白質中之順序將排列好,並決定出雙硫鍵所在之位置。 打斷雙硫鍵雙硫鍵的存在會干擾定序的進行。
半生期較短的蛋白質通常分子量較大,具有酸性pI值,在細胞的新陳代謝中擔任關鍵的調節角色*,且在試管內對熱或蛋白酶的實驗處理較為敏感 近年的研究發現蛋白質N端的胺基酸種類及特定序列(PEST)的數目與蛋白質的半生期有密切關係 - N端的胺基酸種類,穩定者(半生期>20小時)為 Met、Ser、Gly、Ala、Thr與Val,不穩定者(半生期7~30分鐘)為Arg、Lys、Asp、Leu與 Phe,高度不穩定者(半生期2~3分鐘)為Ile、Glu、 Pro、Tyr與Gln - 蛋白質的PEST (Pro、Glu、Ser、Thr)序列出現次數愈多,其半生期愈短 哺乳類細胞內蛋白質的半生期4.
實例(兔的pyruvate kinase), 排除Gly Ramachandran plot*-甘胺酸(glycine)*與脯胺酸(proline)*為α-螺旋的破壞者典型的二級構造為α-螺旋與β-褶片-由Pauling與Corey提出*,Pauling因而獲得1954年諾貝爾化學獎- α-螺旋與β-褶片*的結構特性- 特定蛋白質中特定二級構造的含量*- β-轉折*的結構特性 α-螺旋構造(1) 基酸的側鏈 Robert Corey (1897-1971) Hydrogen bond α-螺旋構造(2) R group (側鏈) 逆向平行 β-褶片構造 同向平行R group (側鏈) 兔的pyruvate kinase的特定功能區域是由數個結構模組組成的 超二級構造(supersecondary structures)為二級構造的組合 - 結構模組(motif, fold)或結構區域*- 功能區域(domain)*為具功能性的特定二級構造的組合 Random coil or unorganized structures - “Random coil is not random!” 3. 三級結構是指已具有二級構造的多肽,因胺基酸側鏈間的交互作用而折疊扭轉成特有的緊密立體形狀(球狀)
直至 1930 年代它在㆟類 正常生理功能所扮演之角色才逐漸為世㆟所知 87。直至 1980 年代,優斯特及柴瓦斯基等㆟發現內皮細胞功能在血管放鬆扮演特定角色 88。這種劃時代的先見 導致了另㆒波內皮功能之研究 89。最後才有㆒氧化氮之發現。因此胺基酸--㆒氧化氮路徑以及㆒氧化氮合成酉每之間之研究 89,開啟了血管新生理論暨動脈硬化--內皮功能之間之新紀元 90。㆟類精氨酸之吸收及合成以及在各器官間之新陳代謝轉換關係業以㆒目了然 ( 詳見圖六 )91,92。㆒般而言,血漿㆗精氨酸維持恆定,它可從腎絲球過濾而從腎小管近端完全再吸收 93。精氨酸之來源是來自於外因性食物或補充。內因性為肝腎合成以及從肌肉釋放 91。最主要是從空腸吸收,經由 Y 系統運送 ( 鈉離子--獨立型攜帶者 ) 91。若為黏膜吸收大部分由腸內細胞代謝及分解。㆒般估計,大約有 30-44%之精氨酸進入循環 94。事實㆖精氨酸在㆟體內之代謝量是變化多端的,吾㆟可從圖六看出端倪。另外精氨酸經 NOS 作用產生㆒氧化氮路徑所產生之影響實不可估計 89,90,92,可從圖七了解它為何在㆟體之生化生理世界扮演最關鍵之角色 89,90,92。㆒氧化氮半衰期僅有數秒之久,其生物活性可延長 1 至 2 分鐘 95,而它與 S-氮化物及血漿白蛋白混合體可使生物活性高達 30 至 40 倍 95;另外㆒氧化氮血漿濃度㆖升 3 至 4 倍 95。而對於低白蛋白疾病狀態㆘ ( 包括腎病症候群、肝硬化、腎衰竭 ),將產生巨大之影響 91。事實㆖,㆒氧化氮在血管功能之調節扮演最主要之角色。不僅如此,對於免疫系統以及神經傳導、血小板凝集及附著皆有關鍵臨門 ㆒腳定江山之功能,詳見圖七 96-99。另外評估血管內皮功能,以及亞硝酸鹽及硝酸鹽含量亦能了解,此各種精氨酸代謝路徑之最終產物 91,92,100。對於健康或疾病之影響,或許有些助益 100。 結論胺基酸具多重功能已無庸置疑。它的生理生化之功能以及它對於血管、內分泌系統、免疫功能以及神經系統之功能,皆造成巨大的影響。
R. Bruce Merrifield 的關鍵新發明是將胜肽之一端連接在固相擔體上來進行合成反應。此固相支持物是一種不溶性的聚合物(樹脂),類似管柱層析實驗中所用的填充物。 胜肽就是在此固相擔體上以重複循環之標準反應組合將胺基酸殘基一個接一個依序聯結而成(圖3-29)。 在每個連續性的步驟中,胺基酸上的保護基可避免無謂的副反應發生。
- Feb 12 Wed 2025 01:02
此時樣品溶液中帶有淨正電荷之蛋白質通過基質之速度會遠較帶有淨負電荷之蛋白質慢,因為前者與基質間產生之交互作用延滯其通過速度。 兩種性質的蛋白質會分成兩個明顯的色帶,而蛋白質色帶在移動相中延展的情形會受到兩種因素影響:一是管柱造成性質差異的蛋白質分離的自然現象;二是擴散作用造成的色帶分散現象
以目前所使用的化學反應組合來說,最重要的限制在於每個化學循環的反應效率。我們可由計算不同長度的胜肽, 在每步驟產率為 96.0% 或 99.8%下所得之總產率(表3-8)來說明。任一步驟之反應不完全,將造成下一步驟不純物的產生(即較短之胜肽片段)。 表 3-8 胜肽合成各步驟產率對總產率之影響 許多新的胜肽聯結方法,可供將胜肽組合成大分子蛋白質。藉由這些方法,各種新型式的蛋白質(甚至包含一般在細胞蛋白質中不存在者)都可藉由化學官能基團的精確定位製造出來。這些新型式的蛋白質,有助於我們以新的方法測試酵素催化特性、創造具有新化學性質之蛋白質、以及可摺疊成特定結構之胜肽序列。 胺基酸序列可提供重要的生化資訊 蛋白質家族具有共同的序列與功能特徵,可以藉由胺基酸序列之間的相似性程度加以判斷歸類。
增加管柱長度將提高分離效果(即解析度增加);但相對地隨著層析時間的增加,蛋白質色帶隨擴散作用也會持續加寬,此現象則會降低解析度。 以圖中為例,蛋白質 A 可完全與 B 和 C 分離,但 B 與 C 之間則因擴散現象而無法達到完全分離的效果。 圖 3-17 管柱層析法。 個別蛋白質由於其性質之差異會以不同之速度通過層析管柱。胺基酸例如在陽離子交換層析法(cation exchange chromatography)中(圖3-18a),固相基質帶有負電荷基團。 此時樣品溶液中帶有淨正電荷之蛋白質通過基質之速度會遠較帶有淨負電荷之蛋白質慢,因為前者與基質間產生之交互作用延滯其通過速度。 兩種性質的蛋白質會分成兩個明顯的色帶,而蛋白質色帶在移動相中延展的情形會受到兩種因素影響:一是管柱造成性質差異的蛋白質分離的自然現象;二是擴散作用造成的色帶分散現象。 圖3-18(a) 顯示離子交換層析法利用蛋白質在特定 pH 值時之靜電荷差異進行分離。
但一級構造的分析對研究蛋白質是否具有轉譯後的修飾作用仍深具價值 蛋白質定序步驟*- 蛋白質純化,可利用蛋白質的大小、帶電特性、溶解度或與特定物質的吸附作用等 - 次單元的分離,可利用高鹽濃度或改變溶液的pH值- N端與C端胺基酸的定性分析- 利用酵素或化學試劑的作用將多肽鏈分割成小片段,確保定序結果的正確性- 胺基酸自動定序 - 序列的重組- 雙硫鍵的定位*,可利用對角線電泳 N端胺基酸定性 FDNB PITC Edman降解反應 蛋白質定序過程 硫鍵的定位- Diagonal electrophoresis (對角線電泳) 其他的定序方法-
後者是來自於血漿或是精胺酸酉每分解精胺酸之細胞內崩解產物。它可轉化成腐肉鹼胺。後者是鳥胺酸去羥酉每之作用。精胺酸崩解乃是聚胺形成之初步,而細胞內精胺酸之濃度控制者多胺之形成 44。 在聚胺合成過程㆗,胺基酸前身所扮演之角色或許可解釋精胺酸分解酉每在許多組織㆗分布很廣。㆒旦構成之後,腐肉鹼胺在㆒系列反應㆗會轉換成精胺質,這過程需要胺基㆛晴之加入㆒此化學結構團是來自於㆙硫胺酸。它是介由㆗間物質 S-腺 ㆙硫胺酸之催化以及精胺質合成酉每之作用合成。( 詳見圖㆔ ),此種反應作用包含精胺質暨精素合成酉每是公認為不可逆之反應。 但是精素轉換回去成精胺質及腐肉鹼胺仍可發生 ( 圖㆔ ),但必須經由特殊的酉每如:精胺質-N-轉換酉每以及聚胺氧化酉每之個別作用 46。 聚胺之功能特別是提高細胞之增生,以及組織之成長以及分化,扮演相當重要之角色 45。
當要求較高之相同性時,最具保守性之胺基酸殘基往往會被過分呈現,而使得這些基質在用來辨識相關性較低之同源蛋白質時較不適用。 測試結果顯示 Blosum62 胺基酸可提供範圍最大的蛋白質家族之可靠比對,因此它也成為許多序列比對軟體之系統原始設定表格。 圖3-31 顯示此區塊取代基質表是經由比較數以千計之序列比對小區塊所產生,這些小區塊之序列至少有 62% 完全相同。其餘不相同的殘基則被賦予一分數,說明它們被其他胺基酸殘基取代之頻率。 每次取代都對一次特定之比對分數有貢獻,正值(黃色標示者)會增加分數,胺基酸負值則會減去分數。比對序列中相同的殘基(自左上至右下角對角線黃色標示者)也因它們被取代的頻率產生一個分數。 具有特殊化學性質之 Cys 與 Trp 分別得到9與11分的高分,而較易在保守性取代中被替換之 Asp 與 Glu 則各有6與5分。 許多電腦程式利用 Blosum62 為新的序列比對打分數。
- Feb 12 Wed 2025 01:01
以利初步搜尋之進行。 步′鍺二 選擇資科厙 。 目前網路上與蛋白質序列相關之資料厙中較為完整者為 SWISS﹣PROT 以及 PIRe 此二責料厙之綢址列於表一 。此二網蛣中均具有多重搜尋之功能墜本文中胜肚序列均取自 SWISS﹣PROT(releas639ˍ7)﹙…﹚責料厙。SWISS PROT的特色 在於其周詳之註解系統之責料進行過篩選處理 。 尤為重要的是該資料厙對重複
酸形成 ( Nucleotides synthesis )胺基酸治療 ( Amino acid therapy ) 表㆔:L-精氨酸對於荷爾蒙分泌之影響組織 荷爾蒙 胰臟 胰島素(insulin)昇糖素(glucagons)胰臟多胜月太(PP)生長激素釋放抑制因子(somatostatin) 腦㆘垂體 生長激素(GH)泌乳激素(prolactin)腎㆖腺 兒茶酚氨(catecholamines)表㆕:精氨酸灌注對於健康婦女生長激素之影響 前言自從〝㆒氧化氮〞觀念於 1998 年獲得諾貝爾醫學獎桂冠之後,精氨酸——㆒氧化氮路徑之神秘面紗就此掀開。
雙硫鍵之形成不僅限於分子內 Y 兩個蛋白質分子間之胺基酸也可形成雙硫鍵而造成交 環狀胜肱胺基酸組成之偏好性生物責訊在生物化學課程中之應用 3 聯(crOss link)。本文針對具有分子內雙硫鍵之胜肱,分析雙硫鍵所形成之環狀序列申胺基酸組成之偏好性 。 三‵方法學員需具備使用網際網路(Intemet)的能力 。 本文使用全球資訊網(WOrId Wide Web)之責源進行蛋白質序列之分析 。 所需之配備為 IBM 相容之個人電腦(486 以上)以及 Netscape Navigator (4﹒0 以上版本) 瀏覽軟體0 實驗之基本步驟可按圖二所建議之流程進 行操作。步硼一 首先需明確設定使用網路資源進行搜尋之具體目的 。 此一目的可由學生提出或由教師整理一清單而由學生挑選 。 胺基酸目的之設定應以考量搜尋過程與分析結果所需之時問,並能闡明相關生物性質為原則。本文將以"比較天然環狀胜肚中各胺基酸出現之機率"為範例進行搜尋 。 環狀胜肱限定為由二半胱胺酸(Cys)形成分子內雙硫鍵之胜肚。而包含此環狀序列之胜肚總長度可先限定在 20個胺基酸以內 】以利初步搜尋之進行。 步′鍺二 選擇資科厙 。 目前網路上與蛋白質序列相關之資料厙中較為完整者為 SWISS﹣PROT 以及 PIRe 此二責料厙之綢址列於表一 。此二網蛣中均具有多重搜尋之功能墜本文中胜肚序列均取自 SWISS﹣PROT(releas639ˍ7)﹙…﹚責料厙。SWISS PROT的特色 在於其周詳之註解系統之責料進行過篩選處理 。 尤為重要的是該資料厙對重複 進入資料厙後即可針對搜尋目的輸入條件 。
此種機轉通常也運輸離胺 酸、鳥胺酸、半胱胺酸之運送 15,16。精胺酸從小腸吸收後之命運已被研究,但未定論。迪裴理等㆟發現口服胺基酸溶液後僅有 9%精胺酸是從內臟㆞區釋出 17 。凱斯蒂羅追蹤精胺酸吸收後何處去 18,19?結果認為口服精胺酸大約有 30至 44%從內臟循環移走。更精確的說,有 38%是由內臟循環,其餘 62%是經由末梢靜脈循環運送。 大量精胺酸給予自願者及病患 ( 每㆝口服 30 克 )。尤其是它具有合成代謝功能以及免疫刺激功能。然而對於其代謝及最終命運,仍未知曉。研究㆟員每隔 5 小時使用 6 克,觀察服用 30 克胺基酸之反應發現。大約服用 6 克精胺酸其血㆗濃度會㆖升;為基礎值的 2 至 3 倍,可持續 4 小時。最後㆒劑量服用精胺酸,其藥效可達 12 小時濃度 ( 維持 2~3 倍 )。而且血漿㆗鳥胺酸亦顯現同樣的型態。但對於血漿㆗左旋檸檬酸濃度並無此項變化,目前研究焦點在於精胺酸為㆒氧化氮之前身,需要㆒氧化氮合成酉每來催化。㆒氧化氮是否在內臟㆞區合成?使用同位素追蹤推查發現大約每㆝從尿液排除 16%之氮化物,其來源是由內臟㆞區精胺酸轉由㆒氧化氮所導致 20。 ㆕、精胺酸在肝細胞之運送轉運胺基酸進入細胞膜以及進入細胞漿質存有不同的運送機轉。
蛋白質的功用麩醯胺酸壁細胞,免疫細胞的能量來源,在重症患者中的需求增加,因此在重症患者的營養品中常會添加,戒者額外自費購買麩醯胺酸粉 重症病患要丌要補充,胺基酸在醫界還是有爭議 蛋白質的功用蛋白質的功用 紅肉,白肉怎麼分 紅肉攝取量和大腸癌、心血管疾病、腦血管疾病、高血壓等發生風險為正向相關 有趣的是台灣最近的研究發現紅肉攝取量和總死亡率,心血管疾病死亡率,癌症死亡率
在每一個純化步驟之後,酵素之活性(以酵素單位表示)與總蛋白質含量均會被獨立分析,兩者之比值即為比活性。 活性與比活性這兩個名詞的差異可用圖3-23 的兩個盛裝彈珠之燒杯加以說明。 兩個燒杯中裝有相同數目的紅色彈珠及不同數目的其他顏色彈珠,胺基酸若以彈珠表示蛋白質,則兩個燒杯所含有之活性(以紅色彈珠含量表示)相等;但右方燒杯所含之紅色彈珠佔整體比例較高,故其比活性較高。 圖 3-23 活性與比活性。對不是酵素之蛋白質而言,需要其他適當的定量方法
- Feb 11 Tue 2025 01:15
則只有手術可以使外型恢復美觀 z 整脊是無效的 z 只有全天候的背架矯正是有效的 另外有些觀念是家長需要知道的,例如 z 若月經已來超過 3~4 年,則側彎不易變壞 z 若月經尚未來,則一旦來側彎會進行較快 我以培養盆栽來解釋脊椎側彎的矯正。我們培養盆栽,常固定枝幹,使它往我們希望的方向 長;穿背架矯正脊椎,就像我們培養盆栽一樣
你(妳)身體的其他功能都將跟正常人 一樣,可以盡情的運動、唸書,將來結婚、生子也不會受影響,只是有一段時間你(妳)要比別的 小孩辛苦,那就是在長大前,必須穿著背架來矯正。 特發性脊椎側彎,是目前醫學無法解釋的疾病,X 光中找不到先天性脊椎生長異常,在人群 中確有萬分之三的機率,就比率來說大都是年輕少女,男孩較少。如果發生在女孩,VISTA頸圈則脊椎側彎角 度變化的幅度較大;若在男孩,則變化之機會較小。 五十多年治療經驗,有幾項治療的經驗是大部分之醫師都可以共同接受的。那就是 z 若側彎超過 20 度,則彎曲會繼續進行 z 若側彎超過 40 度,則只有手術可以使外型恢復美觀 z 整脊是無效的 z 只有全天候的背架矯正是有效的 另外有些觀念是家長需要知道的,例如 z 若月經已來超過 3~4 年,則側彎不易變壞 z 若月經尚未來,則一旦來側彎會進行較快 我以培養盆栽來解釋脊椎側彎的矯正。我們培養盆栽,常固定枝幹,使它往我們希望的方向 長;穿背架矯正脊椎,就像我們培養盆栽一樣,將身體的脊椎固定,使它往直的方向長。穿背架開 始會不習慣,但只要穿上一星期,你就會習慣的。 至今除了洗澡或運動的時間外,都要穿著,
目前有許多方法可用來分析蛋白質之一級構造,也有許多方法可標定或辨識胺基端胺基酸殘基(圖3- 25a)。 圖3-25(a) 顯示多肽定序的第一個步驟是決定胺基端之胺基酸殘基,在此所示為 Sanger‘s 方法。 圖3-25(b) 顯示艾德曼降解法可解析整條多肽序列。對較短之胜肽而言,此方法足以定出完整序列,不需先使用 Sanger's 法;然而在較大之多肽定序時通常會先將之斷裂成小片段胜肽,此時需搭配 Sanger's 法較佳。 圖 3-25 多肽定序之步驟。
出現在各類二級構造中的相對頻率給予特定數值(如 P α , Pβ , Pt),經計算後可預測蛋白質的二級構造,此法經已知結構的蛋白質研究與預測結果比對驗證,其準確性可達95%以上 蛋白質三級構造的預測- 三級構造的預測較為複雜,目前仍仰賴計算機龐大的資料存取與計算能力(computer-based calculation, 以energy minimum為原則)進行 - 配合進一步分析已知結構的蛋白質中不同層級的細部 構造(knowledge-based method, 利用多種 database),尚未能精準有效的預測結果 - 其他方法1. 分析不同蛋白質的胺基酸序列,可推斷蛋白質是否為同源蛋白,即源自同一個祖先 2. 以肌紅蛋白與血紅素的研究為例
會使總死亡率與心血管疾病死亡率分別增加22與18%, 且紅肉攝取會增加16%的心血管疾病死亡率,但白肉卻無顯著相關 # 每天的紅肉攝取量,每增加100克,就會顯著增加心血管疾病的死亡率 這篇研究從1991年開始追蹤88,803位青年女性,調查紅肉攝取與乳癌關連,在20年追蹤後,發現每天攝取超過 6 份紅肉的族 群,乳癌發生風險增加 22 %有趣的是,如果每天用一份禽肉替換紅肉,胺基酸可以降低17%的乳癌發生風險,而且對於停經後婦 女,更可以降低達24%這篇在瑞典的研究,追蹤了34,670位女性達10年,結果發現一天攝取86克(約3份)以上紅肉的族群,比起一天吃36.5克(約1份),腦血管梗塞 (cerebral infraction)發生的風險增加22%只有這些疾病嗎?心血管疾病腦血管疾病大腸癌其他腫瘤其實還有更多......
酸形成 ( Nucleotides synthesis )胺基酸治療 ( Amino acid therapy ) 表㆔:L-精氨酸對於荷爾蒙分泌之影響組織 荷爾蒙 胰臟 胰島素(insulin)昇糖素(glucagons)胰臟多胜月太(PP)生長激素釋放抑制因子(somatostatin) 腦㆘垂體 生長激素(GH)泌乳激素(prolactin)腎㆖腺 兒茶酚氨(catecholamines)表㆕:精氨酸灌注對於健康婦女生長激素之影響 前言自從〝㆒氧化氮〞觀念於 1998 年獲得諾貝爾醫學獎桂冠之後,精氨酸——㆒氧化氮路徑之神秘面紗就此掀開。
蛋白質序列可供解讀地球上生命的歷史 演化資訊的複雜性,會以任何可能的方式儲存於蛋白質序列之中。 以一種特定蛋白質而言,對其活性重要的胺基酸殘基 會隨著演化時間保留下來,而較不重要的胺基酸殘基就有可能隨時間改變(即可能被其他胺基酸所取代),這些發生變化的殘基可以提供追蹤演化的重要資訊。 胺基酸的取代並非總是隨機的。在某些蛋白質的一級結構裡,為了保持蛋白質的正常功能,僅能容許特定胺基酸的取代。而有些蛋白質的胺基酸變異性會比其他蛋白質來得高。 基於上述及其他原因,蛋白質彼此之間的演化速率會有差異性。
- Feb 11 Tue 2025 01:09
藉此達到純化的效果。 圖3-18(c) 蛋白質純化常用的三種管柱層析方法 最新改良的層析法是高效能液相層析法(high performance liquid chromatography;HPLC)。此方法利用高壓幫浦,搭配填充可抵抗高壓流動下造成 之碎裂力之高品質層析介質,以提高蛋白質分子在管柱中移動的速度。藉由層析時間的減少,HPLC 可有效限制蛋白質色帶的擴散分散現象
親和性層析法(affinity chromatography)則利用蛋白質結合親和力之差異加以分離。 管柱中之膠體顆粒上共價聯結了特定化學分子基團 (配位基),會與這些配位基作專一性結合之蛋白質分子留在管柱上,因此延滯了它們通過管柱的速度,藉此達到分離純化的效果(圖3-18c)。 圖3-18(c) 顯示親和性層析法利用蛋白質與固定相 胺基酸基質上連接之特殊配位基間結合專一性能力之差異進行分離。會與固定相基質上交聯之特殊配位基作專一性結合之蛋白質分子會留在管柱上,不會結合的蛋白質則被緩衝液沖提出來。爾後再以含有游離配位基之緩衝液進行沖提,將結合在管柱上之蛋白質沖提出來,藉此達到純化的效果。 圖3-18(c) 蛋白質純化常用的三種管柱層析方法 最新改良的層析法是高效能液相層析法(high performance liquid chromatography;HPLC)。此方法利用高壓幫浦,搭配填充可抵抗高壓流動下造成 之碎裂力之高品質層析介質,以提高蛋白質分子在管柱中移動的速度。藉由層析時間的減少,HPLC 可有效限制蛋白質色帶的擴散分散現象,因而大幅提升解析度。 隨著每個純化步驟的完成,胺基酸蛋白質樣品含量與體積通常會隨之減少(表3-5),此時較適合以更複雜(且較昂貴)的管柱層析法加以分離。
甘胺酸(Gly)含量佔1/3且富含脯胺酸(Pro)- 膠原蛋白的一級構造具有Gly-X-Y序列,其中X為 Pro,Y為Pro或Hyp (Gly佔35%,Pro或Hyp佔 21%) - Hyp為Pro經轉譯後修飾作用加上-OH,此修飾作用有助於維持蛋白質結構的穩定,修飾酵素的活性仰賴維生素C (抗壞血酸),維生素C嚴重缺乏會導致 壞血病(scurvy)- Ehlers-Danlos syndrome即因甘胺酸被置換成側鏈較大的胺基酸,因此三股螺旋狀構造不穩定,與習慣性脫臼有關 絲纖維蛋白- 絲纖維蛋白形成β-褶片構造,且層層相疊*
苗栗地區胡瓜種植面積為 95 公頃、產量達 1,618 公噸,番茄種植面積 43 公頃、產量達 637 公噸,青椒種植面積 18 公頃、產量達 157 公噸。此外,國內草莓生產面積約 509 公頃,產 量約 9,1412 公噸,主要產地包括苗栗、南投、新竹等縣,其中苗栗縣生產面積 451公頃,約占 88.6%,為最重要之產區 ( 農業統計年報,110);草莓與番茄屬於高經濟價值作物,市場價值除產量外,品質與甜度同樣為消費者所重視。隨著環保意識抬頭與安全農產品觀念的提升,對於友善環境及食品安全的重視日與俱增,為改善長期使用化肥養分容易固定於土壤中,造成浪費資源之外更會破壞土壤,最終造成減產、土壤板結、鹽鹼化等問題( 朱等,2021),以生物性農業資材替代部分傳統化學肥料,即成為農業生產中受重視的課題。 「微生物肥料」係指人工培養之微生物製劑,在土壤中利用活體生物之作用以提供作物營養分來源,增進土壤營養狀況或改良土壤之理化、生物性質,藉以增加作物產量及品質者。因此,微生物肥料管理法規明訂微生物肥料「係指其成分含具有活性微生物或休眠孢子,如細菌 ( 含放線菌類 )、真菌、藻類及其代謝產物之特定製劑,應用於作物生產具有提供植物養分或促進養分利用等功效之微生物物品」( 楊,2010)。微生物施入土壤,容易受土壤理化性質影響其活性,為維持微生物活性,土壤需有足夠有機質及適宜的土壤水分、空氣、溫度、酸鹼度,( 曾等, 2014)。微生物肥料能提升作物養分吸收能力,因此在肥料減量下,能達到作物施用全量肥料的效果。但是如果土壤養分不平衡,缺少的養分將成為作物生長限制因子,必須補充缺少的養分,維持土壤養分平衡,避免養分供應成為限制因子 ( 蔡, 2019)。 胺基酸代謝是果實發育的核心, 像是丙胺酸與乙酯形成有關 (Perez et al., 1992),苯丙胺酸和胺基酸會通過莽草酸途徑生物合成花青素苷和類黃酮的前體; Galili et al. (2008) 指出四種核心胺基酸,麩醯胺酸、麩胺酸、天門冬胺酸和天門冬醯胺酸 (Gln,Glu,Asp 和 Asn),先在 TCA 循環(tricarboxylic acid cycle) 中衍生自 α -酮戊二酸和草醯乙酸,再通過各種生化過程轉化所有其他胺基酸。研究指出萵苣施用 9 mmol /L 甘胺酸 4 週,雖不會增加鮮重,但可增加花青素、維生素 C、黃酮類之營養含量 (Yang et al., 2018);而草莓定植後 30 天施用 500 µM 的精胺酸會提升品質 ( 總糖、還原糖、有機酸、花青素苷、酚類、維生素 C) 和產量 ( 第一、二期單株總產量 ) Fariba et al. (2017)。 微生物肥料可以改良土壤的微生物環境,增加土壤生物菌量,改善土壤中的一些固定營養元素,促進農作物根部對養分的吸收 ( 曾,2014),近年來受農委會高度重視,農糧署補助農民購買微生物肥料,補助金額為售價二分之一、每公頃最高可達 5,000 元,本文進一步開發適合蔬果類作物營養健康之胺基酸微生物肥料,並測試其使用方法與應用效果,期望未來能商品化以提供農民新型生物性資材之選擇。 材料與方法一、芽孢桿菌菌種鑑定本研究自苗栗縣大湖鄉之草莓根圈土壤,分離篩選出一株生長快速、並能產生內生孢子之MLBV19-3 菌株,
蛋白質降解的機制 細胞內蛋白質的降解主要經由兩個途徑- 溶體或溶酶體系統負責代謝外來或不正常的蛋白質- 細胞液的蛋白質降解體(proteasome)系統負責代謝一般正常蛋白質蛋白質降解體媒介的蛋白質水解(proteasome- mediated proteolysis) - Ciechanover, Hershko與Rose因其貢獻而同獲 2004年諾貝爾化學獎- 泛素(ubiquitin)標記的蛋白質(ubiqutination)被 26S蛋白質降解體*辨識並分解,需ATP及多種蛋白質(酵素E1, E2, E3)參與蛋白質的降解 吃紅肉還是白肉比較健康?用吃肉減肥可行嗎?每天該吃多少豆魚肉蛋?蛋白質攝取過量與不足的影饗為何? 胺基酸是蛋白質的最基本結構如果胺基多於羧基則為鹼性胺基酸,反之,就是酸性胺基酸,兩者數目一樣,為中性胺基酸 2 蛋白質是DNA的最終產物紅色的圈代表實際作用的胺基酸為什麼需要經過折疊才有用?
只含有胺基酸殘基而不含其他化學組成份,這些蛋白質被認為是簡單蛋白質。 有些蛋白質除了胺基酸之外還具有永久結合之化學組成份,這些蛋白質稱為共軛蛋白質(conjugated proteins),其中非胺基酸的部分稱為輔基 共軛蛋白質可就其所含輔基的化學性質為基礎加以分類(表3-4)脂蛋白(lipoproteins)含有脂質醣蛋白(glycoproteins)含有糖基金屬蛋白(metalloproteins)則含有特定金屬原子 有些蛋白質含有一種以上的輔基,而輔基通常在蛋白質之生物機能中扮演重要角色。 表 3-4 共軛蛋白質
- Feb 11 Tue 2025 01:08
實驗結果發現:各種必須胺基酸之混合注劑以及單獨精氨酸 ( 30 克 ) 注射最能引起胰島素分泌 63。注射期間,血糖質會㆖昇且高於正常值,但緊接著會㆘降低於正常值 63 。杜培首先評估精氨酸補充對於胰島素釋放之關係 64。此項研究主要是比較靜脈注射 15 克與十㆓指腸釋放精氨酸 ( 15 克 ) 對於循環㆗胰島素含量之影響 64。結果發現:腸胃道吸收路徑比注射路徑更能刺激胰島素分泌且較持久
(3) 結果雖與搜尋目的相吻合,但資料過於龐雜或稀少 ' 造成分析之困難。 步′躍六 調整或修正搜尋之條件, 重新搜尋 , 直到獲得合理且適於分析之結果為止〝胺基酸本文範例按照上述條件進行搜尋之結果共計有 56 段胜肱符合搜尋條件肅此一總數對研判胺基酸組成趨勢分析而言顯然偏少。因此可逐步增加胜肱序列之長度以擴大搜尋範籌。為 便於說明,本文仍將針對這跖段胜肱進行結果分析 。
R. Bruce Merrifield 的關鍵新發明是將胜肽之一端連接在固相擔體上來進行合成反應。此固相支持物是一種不溶性的聚合物(樹脂),類似管柱層析實驗中所用的填充物。 胜肽就是在此固相擔體上以重複循環之標準反應組合將胺基酸殘基一個接一個依序聯結而成(圖3-29)。 在每個連續性的步驟中,胺基酸上的保護基可避免無謂的副反應發生。
精胺酸與嘧啶形成之關聯已被動物 ( 老鼠 )實驗所證實 54。若飲食㆗缺乏精胺酸,則乳清酸產量大增甚至造成乳清酸尿產生。並且嘧啶生物合成相關之酉每活性增加並且導致嘧啶核 酸合成增加。最令㆟引起興趣的事食物缺乏精胺酸時,將導致 DNA 及 RNA 合成速率大幅減少 54。這些控制路徑之因子大體是複雜的、需要進㆒步來澄清的。然而目前證據指陳肝內精胺酸以及氨的濃度決定胺㆙基磷酸究竟是轉換成尿素或是嘧啶合成。 十、精氨酸與荷爾蒙分泌佛洛依德最先研究指陳㆟類大量攝取蛋白質食物以後會導致血漿㆗胰島素分泌增加 63。此項效應乃是攝取胺基酸之故 63。接㆘來之研究對象是健康自願者並且探討何種胺基酸具此種效應 63 。接受測試者皆空腹八小時,然後接受個別之 胺基酸灌注 ( 劑量從 2.5 至 30 克 ) 不等 63。或是 2 種至 10 種混合胺基酸灌注,實驗結果發現:各種必須胺基酸之混合注劑以及單獨精氨酸 ( 30 克 ) 注射最能引起胰島素分泌 63。注射期間,血糖質會㆖昇且高於正常值,但緊接著會㆘降低於正常值 63 。杜培首先評估精氨酸補充對於胰島素釋放之關係 64。此項研究主要是比較靜脈注射 15 克與十㆓指腸釋放精氨酸 ( 15 克 ) 對於循環㆗胰島素含量之影響 64。結果發現:腸胃道吸收路徑比注射路徑更能刺激胰島素分泌且較持久 64。意謂著:口服胺基酸更能促進腸胃道分泌荷爾蒙。為何注射胰島素則血糖質稍偏高?原因無它,仍是昇糖素分泌升高之故 65。其他研究也顯示精氨酸可促進胰島素胜酉每之荷爾蒙分泌 66。舉例來說,生長激素釋放抑制因子 ( SS ) 以及胰臟多胜月太對於精氨酸灌注皆會產生分泌效果 66。
靜脈灌注胺基酸可導致循環㆗兒茶酚氨之含量增加 74-75。精氨酸對於這些荷爾蒙之機轉仍有待澄清。在腦㆘垂體分泌之荷爾蒙之釋放機制包括多巴胺性 ( dopaminergic ),新腎㆖腺性 ( noradrenergic ) 以及血清素激活性 ( serotoninergic ) 之㆔種路徑 76。 最新研究指陳:㆒氧化氮合成酉每存在於胰臟、腎㆖腺以及腦㆘垂體 77。因此,科學家認為㆒氧化氮媒介主要的荷爾蒙釋出反應,尤其使用胺基酸誘發荷爾蒙之機轉,乃是介由㆒氧化氮 76-77 。因此諸多實驗證據指陳:對於胰島素、生長激素、泌乳激素以及兒茶酚氨之分泌,㆒氧化氮的確扮演相當重要的角色 77,78。十㆒、精氨酸副作用< 作用 L-精氨酸是相對㆞無毒性。動物實驗已顯示空腹老鼠致死劑量 ( LD50% ) ㆒半為每公斤 3.8 克 79。事實㆖㆟類使用大劑量來測量腦㆘垂體功能其來有自。㆒般而言,使用每公斤 0.5 公克至 30 公克,靜脈注射 20 分至 30 分鐘皆無明顯之副作用 67,68,尤其是應用於生長激素之測定,最早由美梨米等㆟發表於著名之 Lancet ( 刺胳針 ) 雜誌暨新英格蘭雜誌 80,81。通常精氨酸灌注是相當安全的,但是精氨酸與其他陽離子氨基酸皆可導致鉀離子從細胞內液轉向細胞外液 80,因而產生高血鉀情況 81 。它亦可刺激鉀離子排出 81。對於高血壓使用精氨酸灌注,反而會使鈉離子排出增加,尤其是鹽分敏感病㆟。㆒般而言,正常㆟鉀離子排除相當快速,通常不會造成生理㆖之困擾。然而在特定病㆟諸如肝疾或腎功能不全,由於無法代謝精氨酸或是排鉀能力減弱。因此文獻㆖曾經出現高血鉀之報告 82。靜脈灌注精氨酸 ( 每分鐘< 每公斤 8 毫克 ) 目前用來降低血壓,尤其是高血壓病㆟以及主動脈重健手術時使用,成效良好 83。這些降壓效應,㆒般認為是經由精氨酸轉換為㆒氧化氮所致,特別是內皮細胞,造成血管擴張效果 83。另外副作用值得㆒提的是過敏性反應 (㆖呼吸道阻塞、紅斑疹、手腳水腫 )84。尤其在大量灌注時,這些症狀仍須靠組織胺使用,就無大礙 84。這些現象最早由提瓦利等㆟提出 84。這些現象之機轉,究竟是胺基酸本身所引起或是精胺酸聚合物。或是灌注㆗含〝不純物質〞所導致仍未定論 84。但最新文獻使用精胺酸注射灌注,皆無㆖述副作用報告。由於藥物之純化< 提煉過程日益精進,大體而言,大量靜脈注射精氨酸相當安全。特別是肝、腎功能衰竭病㆟使用應特別小心。 總之使用大量精氨酸對於健康㆟及癌症病㆟作為營養療法 ( 連續 3 ㆝,每㆝高達 30 克 ) 皆可安全㆞使用 85,86。㆒般病㆟耐受性良好,最大之副作用為腹瀉 (可用止瀉劑控制 ),輕度腹瀉及腸胃不適,文獻㆖皆有報告,但比例仍少 85,86。平心而論:精氨酸 ( 食療或補充 )皆有益於身體內皮功能之改善,副作用輕 微。大量使用可明顯降低血壓。 十㆓、精氨酸在健康< 疾病所扮演之角色在 1886 年最早由德國科學家舒茲首先發現精氨酸 2,3。
研究者可由每個新的純化步驟後,經電泳分析蛋白質色帶之減少情形評估整個蛋白質純化流程之進展。 再與經同一電泳膠體分離之已知分子量蛋白質標準品比較後,任一未知蛋白質均可由其在膠體上所在之位置計算出其概估之分子量(圖3-20)。 如果蛋白質有兩個或以上之次單元,則 SDS 電泳也會將這些次單元分離,胺基酸並在膠體中分別呈現出不同之色帶。 圖3-20 顯示蛋白質在 SDS 聚丙烯醯胺膠體電泳(SDS-PAGE)中之泳動率與其分子量大小有關。
- Feb 11 Tue 2025 01:07
但這兩個片段之間是由較不相關且長度不同的序列相連接,因而造成這兩個配對良好之序列無法同時進行比對。 為了解決這個問題,電腦軟體引入「間隙」的觀念。對上述序列其中一個加入間隙,即可將兩段配對序列調整成可以進行比對的模式(圖3-30)。 事實上,如果引入足夠量的間隙,幾乎任何兩個序列都能進行某些程度的比對
Anfinsen等人獲得1972年諾貝爾化學獎 9. 蛋白質立體構造的摺疊Anfinsen等人的研究結果提出“All of the information necessary for folding the peptidechain into its “native” structure is contained in the amino acid sequence of the peptide” 蛋白質特有構形的形成* Levinthal’s paradox (1968年) - 假設蛋白質A含有100個胺基酸,若每一個胺基酸只有兩種可能的空間分佈情形,則此蛋白質的構形可有 2100個可能性,如測試每一種可能性需10-13秒,則 需4 × 109年才能達到特有構形,但生理狀況(in vivo)下蛋白質A卻只需約5秒即可摺疊成特有的構形 蛋白質摺疊的過程- 以overall energy minimum為準則*- 摺疊的驅動力(driving force)為亂度(entropy)
在序列比對過程中,我們會給予兩序列中胺基酸殘基相同的位置一個正值的分數(這個分數的數值依所使用軟體之不同而有差異),用以評估比對之品質。這個過程有點複雜性存在,有時候進行比對之兩個蛋白質在某兩個序列片段配對良好,但這兩個片段之間是由較不相關且長度不同的序列相連接,因而造成這兩個配對良好之序列無法同時進行比對。 為了解決這個問題,電腦軟體引入「間隙」的觀念。對上述序列其中一個加入間隙,即可將兩段配對序列調整成可以進行比對的模式(圖3-30)。 事實上,如果引入足夠量的間隙,幾乎任何兩個序列都能進行某些程度的比對。 圖3-30 顯示來自兩種研究得相當透徹的胺基酸細菌菌株大腸桿菌及枯草桿菌之延伸因子 EF-Tu 之局部序列作比對,若對枯草桿菌之 EF-Tu 序列加入間隙,再與大腸桿菌之 EF-Tu 序列進行比對時,可得到較佳之比對結果。兩者完全相同之胺基酸殘基以黃色區塊表示。 圖 3-30 使用間隙作蛋白質序列比對。
雙硫鍵之形成不僅限於分子內 Y 兩個蛋白質分子間之胺基酸也可形成雙硫鍵而造成交 環狀胜肱胺基酸組成之偏好性生物責訊在生物化學課程中之應用 3 聯(crOss link)。本文針對具有分子內雙硫鍵之胜肱,分析雙硫鍵所形成之環狀序列申胺基酸組成之偏好性 。 三‵方法學員需具備使用網際網路(Intemet)的能力 。 本文使用全球資訊網(WOrId Wide Web)之責源進行蛋白質序列之分析 。 所需之配備為 IBM 相容之個人電腦(486 以上)以及 Netscape Navigator (4﹒0 以上版本) 瀏覽軟體0 實驗之基本步驟可按圖二所建議之流程進 行操作。步硼一 首先需明確設定使用網路資源進行搜尋之具體目的 。 此一目的可由學生提出或由教師整理一清單而由學生挑選 。 胺基酸目的之設定應以考量搜尋過程與分析結果所需之時問,並能闡明相關生物性質為原則。本文將以"比較天然環狀胜肚中各胺基酸出現之機率"為範例進行搜尋 。 環狀胜肱限定為由二半胱胺酸(Cys)形成分子內雙硫鍵之胜肚。而包含此環狀序列之胜肚總長度可先限定在 20個胺基酸以內 】以利初步搜尋之進行。 步′鍺二 選擇資科厙 。 目前網路上與蛋白質序列相關之資料厙中較為完整者為 SWISS﹣PROT 以及 PIRe 此二責料厙之綢址列於表一 。此二網蛣中均具有多重搜尋之功能墜本文中胜肚序列均取自 SWISS﹣PROT(releas639ˍ7)﹙…﹚責料厙。SWISS PROT的特色 在於其周詳之註解系統之責料進行過篩選處理 。 尤為重要的是該資料厙對重複 進入資料厙後即可針對搜尋目的輸入條件 。
蛋白質激酶A的活化 1. 細胞內蛋白質的新陳代謝(分解)蛋白質雖有驚人的特性,卻非“長生不老”,蛋白質隨著“年紀”的增長,會累積多種發生的化學反應而造成生物活性的喪失 - 如胺基酸支鏈的硫原子氧化,天門冬醯胺酸與麩醯胺酸的側鏈的去醯胺作用,碳的異構化作用,胺基與葡萄糖間非酵素的反應(最普遍)等 - 此類不正常或老化的蛋白質需持續被分解移除2. 細胞內特定蛋白質的含量是維持動態平衡的狀態 蛋白質持續地被製造與被分解
絲纖維蛋白富含甘胺酸與甲胺酸(Ala),且每兩個胺基酸就有一個甘胺酸出現纖維狀蛋白因具有特殊的一級結構(特定的胺基酸組成與排列)而形成特殊構造,再次驗證Anfinsen等人對蛋白質結構的形成與結構功能關係的論點 1. 蛋白質的構形變化蛋白質分子為dynamic分子以球狀蛋白為例- 分子的振動,如胺基酸側鏈的擺動*等,變化微小,有如“breathe”般 - 構形的變化(conformational change)*,變化較顯著,與蛋白質的活性或功能有關 2. 蛋白質構形變化的例子酵素與受質,血紅素與O2與肌肉收縮時肌凝蛋白與肌動蛋白(Ca+2的角色) 3.