close

然後 將其接合使用。 156 二、計算法 若用尺量法無法量取或帶輪尚未裝配妥善,須事前先行準備應用之皮帶 時,均須運用計算法,求得皮帶之長度,而開口帶與交叉帶又有不同,茲分述 如下:  開口皮帶 如圖 7 - 12 所示,設 o d C n D a 2 b 1 ▲圖 7 - 12 開口皮帶 D:大輪之直徑 d:小輪之直徑 C:兩轉軸之中心距離 L:皮帶全長 1:大輪接觸角(包 角) 2:IKO軸承小輪接觸角 :弧度 公式 7 - 1 則 = ( + )+ +( - ) 公式 7 - 2 1= + = + - 2= - = - - 帶輪之接觸角須大於 120°為佳,低於此角度時,容易發生滑動現象。  交叉皮帶 3 兩平行軸上之帶輪,其直徑各為 100cm 及 20cm,兩中心軸距為 80cm,試問以 開口帶連接,其帶圈與帶輪之接觸角各為若干? D = 100cm d = 20cm C = 80cm 由(公式 7 - 2)可知: = - = -  = = 大輪與皮帶之接觸角: 1= + = +  = 小輪與皮帶之接觸角: 2= - = -  = 159 帶 輪 7 ( ) 一皮帶輪傳動裝置,輪徑分別為 900mm 及 600mm,軸心距離為 1500mm,則使用交叉皮帶比開口皮帶所需長度差多少mm? 420  390  360  330。 7-4 速比 t ▲圖 7 - 14 開口皮帶傳動 假設帶與帶輪之間沒有滑動 的話,帶就僅發揮中間媒介的功 能而已,而兩個帶輪之轉速比和 兩輪直接接觸的時候,亦即和圓 盤輪的轉速比一樣,由此可知, 無論使用開口帶或交叉傳動,其 速比恆無相異,僅迴轉方向有所不同,如圖 7 - 14 所示,設 D1:主動輪直徑 D2:從動輪直徑 N1:主動輪每分鐘迴轉數(rpm) N2:從動輪每分鐘迴轉數(rpm) t :皮帶厚度 V :皮帶之速度 則 = ( + )= ( + )(D1 + t 或 D2 + t 為中立面之直徑, 在中立面因不受應力影響,故其上任何一點速度皆相等)

 


 

此類平台僅提供幾十微米以下的短行程微動位移。 近年來在長行程奈米定位平台的研究以一維居多,且以長行程的粗位移加上微動位 移的兩段式定位為主,而位移量幾乎都以雷射干涉儀進行回授控制。但因雷射干涉儀價 格昂貴,使得線上檢測極為耗費成本且部分平台結構及傳動元件取自工業成品,使得誤 差源無法避免,故定位準確度或精密度約只能達到1μm 至0.1μm。 連座軸承本計劃是使用市面上之 DVD player,並利用其雷射光學讀寫頭製作 DVD 雷射探頭, 以取代售價昂貴之雷射干涉儀,並用來測量定位系統上 X-Y 軸之位移並以 DSP 作即時控 制。此微奈米精密定位平台其精度可達到±250 奈米,如此將可大為降低購置成本,以使 產業界之相關應用更為普及。 壹、緒論 一、 研究動機 在現代化工業中,由於高精度的產品需求,使得加工製程中,對於製造精度的要求 也愈趨嚴格,因此微機電和奈米技術逐漸受到重視,相對的高精度的量測技術也愈顯重 要。近年來,精密工業發展蓬勃,無論是通訊、光電、生物科技、

 


 

用活相互連接而成,各節可以隨時裝上或拆下,以調 整鏈的長度。 ▲圖 8 - 7 節鏈 184  合環鏈(closed link chain) 如圖 8 - 8(a)、(b)所示,又稱閉鎖銷鏈(closed-end pintle chain), 由連接片、間隔管、銷等連接而成,大都用於連續操作工廠之輸送系統,此種 鏈僅限於低速率、重負載之場合。 三、動力傳達鏈(power transmission chain) 精密定位台在較高速度下傳達較大動力且兩軸之轉速比需正確時所用之鏈條,此種鏈 多用鋼料精製,形狀富規律,故需使用較精密之鏈輪配合之,依其形式之不同 可分為三種。  塊狀鏈(block chain) 如圖 8 - 9 所示,由實體鋼之塊狀環組合而成,製造容易,價格便宜,用 於較低轉速之動力傳達,速率不超過 40~45 cm/sec。 (a) (b) ▲圖 8 - 8 合環鏈 ▲圖 8 - 9 塊狀鏈  滾子鏈(roller chain) 如圖 8 - 10(a)、(b)所示,由活動滾子、軸襯、銷及聯片組合而成, 為動力傳達鏈中最常用者,常使用於腳踏車、機車及一般工廠傳送動力用,適 於高速動力之傳達。如圖 8 - 11 所示為鏈節之節距、滾子直徑、寬度。若傳達 較大動力時,則可採用多條並列之方式以達到所需之目的。 185 8 鏈 輪 W h T T Dr ppppppp H L M J D (a)滾子鏈之組合圖 鏈板 襯套 鏈銷 開口銷 (b)鏈節之分解 T:鏈板厚度 H:滾子鏈板高度 W:滾子鏈片內寬 Dr:滾子外徑 D:銷外徑 L:鏈銷 L 部長度 M:鏈銷 M 部長度 h:鏈銷板高度 p:節距 ▲圖 8 - 10 滾子鏈 鏈條寬度 滾子直徑 節距 鏈條寬度 滾子直徑 節距(雙節距)

 


 

所示,此種軸承可同時承受徑向負荷與軸向負荷,單列斜角滾珠軸承只 能承受單方向的軸向推力;而雙列斜角滾珠軸承則可以承受雙方向的軸 向推力,為了能承受雙方向的軸向推力,可將兩個單列斜角滾珠軸承配 對使用,如圖6-12(c)、(d)、(e)所示。此種軸承常用於小型工 具機之主軸。 (a)單列 (b)雙列 D d 2B (c)同向(DT)配例 (d)背對背(DB)配例 (e)面對面(DF)配例 D:標稱軸承外徑 d:標稱軸承內徑 B:標稱軸承寬度 ▲圖 6 - 12 斜角滾珠軸承 112 單列止推滾珠軸承(single - row thrust ball bearings):如圖 6 - 13 所 示,主要承受軸向負荷,NACHI軸承不適於高速運轉。 d d D D H D:標稱軸承外徑 D1:軸承箱軌道盤的標稱內徑 d:單列軸承標稱軸承內徑 d1:軸軌道盤之標稱外徑 H:單列軸承的標稱軸承高度 ▲圖 6 - 13 單列止推滾珠軸承 雙列止推滾珠軸承(double - row thrust ball bearings):如圖 6 - 14 所 示,


 

一般來說,由於軸承是承受一定負荷旋轉,因此必須讓套圈以緊配合使之牢固地與軸或 外殼固定,但還必須充分考慮軸承實際上的使用條件並參考過往經驗來做判斷。 可以考慮的項目建議如下: 1. 內、外圈負荷的性質、方向與大小 2. 軸承的內部游隙 3. 運轉時的軸承、軸與外殼的溫度分佈 4. 軸與外殼的加工品質 ( 精度 )、材質及結構 5. 軸承的型式與尺寸 6. 安裝與拆卸需求 16 八、軸承內部游隙   軸承的內部游隙是指軸承在未安裝狀態下,將內圈或外圈其中之一固定,未固定的另一 個作徑向或軸向移動時的移動量。根據移動時往徑向移動稱做徑向內部游隙,NACHI軸承往軸向移動時 的稱為稱做軸向內部游隙,這樣測量出來的游隙視為理論游隙。 軸承內部游隙圖   安裝後,軸承因軸與外殼形變與所施加的負荷或因運轉溫度升高而改變的內部游隙稱作 工作游隙,一般會比安裝前游隙來的小。游隙的大小會影響到軸承的工作壽命、溫升、雜訊、 振動等性能,因此在使用前務必選擇合適的游隙。   

 

 

 

 

arrow
arrow
    文章標籤
    軸承
    全站熱搜
    創作者介紹
    創作者 mars0711 的頭像
    mars0711

    生活相關知識分享

    mars0711 發表在 痞客邦 留言(0) 人氣()